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Abstract. We study the excited-state energies of the s-wave hydrogen atom with the 
polynomial perturbation 2Ar+ 2A2rz. We demonstrate the existence of a discontinuity in 
the eigenvalue spectrum at A = 0 as A changes from positive to negative. 

The ground state of the s-wave Hamiltonian for a hydrogen atom with a polynomial 
perturbation 

H = p2 /2  - l / r+2Ar+2A2r2 (1) 

was first studied by Killingbeck (1978). Such Hamiltonians are also of interest in 
studies of quark confinement where the - l / r  term represents the gluon exchange 
potential and the 2Ar + 2A2rz terms are responsible for confinement. Killingbeck pointed 
out that for A > 0 this Hamiltonian possesses the exact solution for the ground state 
given by 

E,-,= 3A -1  (2a)  
$,-, = exp(-r - Ar’ ) .  (2b) 

Although these are acceptable as the ground-state energy and wavefunction respectively 
for A > 0, they are clearly unacceptable for A < 0 since then $,, becomes non-square 
integrable. Thus the usual Rayleigh-Schrodinger ( RS) perturbation theory in powers 
of A for the ground-state energy, which agrees with (2a),  clearly breaks down for 
A < 0. Subsequently it was shown by Saxena and Varma (1982) from arguments based 
on scaling that the correct expansion parameter for the RS series in the present case 
is lA / - ’ ’2  and not A and this leads, for the ground-state energy, to the perturbation 
expansion for large 1 ~ 1 :  
Eo = 31A I + ( ~ ~ A ~ / T ) ’ ” ( A / ~ A  I - 1) + [+ - (8 In 2 ) / ~ ]  + ( A l l , +  I)[(8 In 2 ) / ~  -21 +. . . (3) 
which is non-analytic at A = 0 and gives different series for positive and negative A. It 
agrees with (2a)  for A > 0 and its correctness for A < O  for large / A 1  was verified by 
variational and Hill determinant calculations. 

In this letter we study the behaviour of the energy levels of the excited states of 
the Hamiltonian (1) as a function of A. We start with a qualitative discussion. Note 
that, for large \ A l .  the Hamiltonian (1) is dominated by the 2A2r2 term. Hence it is 
easy to see that 

lim E, =(4n+3)lAI n =o,  1 , 2 , .  . . (4) 
l A 1 - X  

and these are in fact upper bounds to the energy levels of the system for negative A 
since H < p 2 / 2 + 2 A 2 r 2  for A < O .  

0305-4470/88/070389 + 06$02.50 @ 1988 IOP Publishing Ltd L389 



L390 Letter to the Editor 

The behaviour near A = O  is much more complicated. To see this we write the 
potential corresponding to the Hamiltonian ( 1 )  as 

V( r )  = -1/ r + 2Ar + 2A2r2 = - 1 /  r -f + 2(Ar + $ ) 2 .  (5) 

Thus as A + O+ the potential goes smoothly into the attractive Coulomb potential - l / r .  
Therefore in this limit the eigenvalues should tend smoothly to the s-wave hydrogen 
atom eigenvalues: 

lim E,  = -1/[2(n + I ) ~ ]  
A -o+ 

n = 0 , 1 , 2  , . . . .  

Since in fact the terms 2Ar and 2A2r2 are positive definite for A > 0, the hydrogen atom 
eigenvalues provide lower bounds to the energy levels for all positive A. 

However, for negative A, in addition to the attractive Coulomb well at r = 0, the 
potential possesses a subsidiary minimum at r = -1/2A, of width = - 1/2A and depth 
=2A -f. Thus in the limit A +O-, the position of this subsidiary minimum moves to 
infinity, its width also becomes infinite and its depth tends to the constant value -1. 
Therefore, in this limit, other than the ground state of the stystem - f - 3 ( A (  which 
remains localised in the Coulomb well, all other states collapse preferentially into the 
displaced harmonic oscillator well at r = 1/21Al. The expected behaviour of the eigen- 
values is therefore 

lim E n = - f + ( 2 n - 3 ) / A I  n = 0, 1 , 2 ,  . . . (7) 
A - 0 -  

i.e. all the eigenvalues collapse to - f and the slope of the nth eigenvalue for A + 0- 
is expected to be -2n + 3. 

To summarise, for A > 0 the system possesses a Coulomb well at the origin and an 
infinite confining wall which moves further and further away as A -+ 0. At A = 0, only 
the Coulomb well remains and the energy spectrum transforms smoothly to that of a 
s-wave hydrogen atom. Then as soon as A becomes negative, even by an infinitesimal 
amount, a very wide harmonic oscillator well springs up at -1/2A whose depth is 
equal to the energy of the ground state of the hydrogen atom. The spectrum thus 
transforms from equation ( 6 )  at A = O  to equation (7) for A <O.  There is therefore a 
discontinuity in the behaviour of the energy levels at A = 0 as we go from positive to 
negative A. They go into the different Coulomb levels -1/[2(n+1)2]  at A equal to 
zero and emerge all together from --: as A becomes negative. The possibility of 
discontinuity in the eigenvalue spectrum may also be seen to arise from the fact that 
the surface of extrema of the potential V ( r )  given by equation (5) can be written as 

hf = r ( l / r 3 + 2 A / r + 4 A 2 )  = (z3+2Az+4A2) /z  for z =  l / r  

where the expression within brackets is reminiscent of the classical catastrophe (Thom 
1975). However, the differences need to be noted. In the present case the coefficients 
of the constant and linear terms are not independent of each other, the range of 
variation of z is only over the positive real line, and the surface of extrema possesses 
additional structure because of the presence of z in the denominator. 

To put these qualitative arguments regarding the behaviour of the eigenvalue 
spectrum on a firm footing we carry out a two-parameter linear variational calculation 
for A <O, using as our trial wavefunction: 

$ , ( r ) =  C ,  exp(-r)+C2exp[A(r+1/2A)2] (8) 
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the first term representing the ground-state wavefunction of a Coulomb potential and 
the second the ground-state wavefunction of a displaced harmonic oscillator centred 
at r = -1/2A (remember A < 0). If we ignore terms which vanish as fast as or faster 
than exp( 1/4A) in the limit A + 0-, the secular determinant is diagonal and the system 
has two levels: 

Eo=-$+3A +6A2 E ,  = -$+ A +4A2. (9) 

These therefore provide upper bounds to the ground-state and the first excited-state 
energy levels of the system for negative A (MacDonald 1933), showing that neither of 
these levels can lie higher than - f in the limit A + 0-. 

We now use the method of Hill determinants (Biswas et al 1971, 1973) to calculate 
numerically the eigenvalues of the system. For this purpose we use an ansatz for the 
wavefunction given by 

where a is an adjustable parameter included to ensure convergence and U is the 
positive root of the indicia1 equation in a standard Fuch's type solution (Copson 1935) 
of the Schrodinger equation corresponding to the Hamiltonian H. The numerical 
values of the first four eigenvalues of the system for -0.1 S A 6 0.1 are listed in table 
1, and the behaviour of the first nine eigenvalues for -0.5 S A C 0.5 is shown graphically 
in figure 1. The catastrophic collapse of the eigenvalues to -5 from the left of A = O  
and their emergence from the s-wave hydrogen atom levels from the right is clearly seen. 

Table 1. The results of the calculations of the first four eigenvalues of the Hamiltonian 
(1) to six significant places for -0.1 C A  SO.1 using the method of Hill determinants. 

~~ ~~~~ 

Eo E ,  E2 E,  

+0.10 -0.200 000 0.803 302 1.497 085 2.1 10 760 
+0.09 -0.230 000 0.717 643 1.358 972 1.922 717 
+0.08 -0.260 000 0.631 234 1.219 370 1.732 596 
+0.07 -0.290 000 0.543 951 1.078 012 1.540 01 2 
+0.06 -0.320 000 0.455 632 0.934 536 1.344 442 
+0.05 -0.350 000 0.366 057 0.788 434 1.145 144 
+0.04 -0.380 000 0.274 908 0.638 953 0.941 007 
+0.03 -0.410 000 0.181 703 0.484 883 0.730 208 
+0.02 -0.440 000 0.085 622 0.324 019 0.509 352 

0.270 358 +0.01 -0.470 000 -0.014 973 0.151 347 
-0.125 000 -0.055 556 -0.03 1 250 

-0.01 -0.530 OOO -0.510432 -0.490 895 -0.471 394 
-0.02 -0.560 000 -0.521 895 -0.484 162 -0.446 988 
-0.03 -0.589 997 -0.534 759 -0.48 1 084 -0.428 384 
-0.04 -0.619 882 -0.548 281 -0.476 473 -0.399 587 
-0.05 -0.649 107 -0.558 996 -0.462 748 -0.356 282 
-0.06 -0.676 826 -0.564 684 -0.440 225 -0.302 607 
-0.07 -0.702 453 -0.565 31 1 -0.410 802 -0.241 233 

-0.275 910 -0.173 812 -0.08 -0.725 788 -0.561 518 
-0.09 -0.746 866 -0.553 969 -0.336 551 -0.101 457 
-0.10 -0.765 827 -0.543 21 1 -0.293 450 -0.024 969 

0.00 -0.500 000 
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Figure 1. Plot of the first nine eigenvalues of the Hamiltonian (1) for - 0 . 5 s  A G0.5 
calculated using the method of Hill determinants. 

As a matter of interest, we look at the eigenvalue spectrum of the Hamiltonian 

HR = p 2 / 2 +  l l r  - 2 A r + 2 A 2 r 2  (11) 

which differs from H in that the Coulomb term is now repulsive and the linear term 
is of opposite sign. HR shares with H the property that its ground-state energy and 
wavefunction are exactly solvable and these in fact are still given by equations ( 2 ) .  
However, arguments similar to those given above reveal that whereas the potential 
corresponding to H R  is confining for all non-zero values of A, an infinitely wide 
oscillator well once again of depth -f now develops in the limit A + O + ,  whereas at 
A = 0 there is no confinement and hence there are only zero-energy bound states. Since 
the large-\AI behaviour of these eigenvalues are similar to those of H, we expect the 
energy spectrum to collapse to zero as A + 0- and when A becomes positive we expect 
the levels to emerge from -4. This is borne out by Hill determinant calculations and 
we display the results in figure 2 which shows the anticipated behaviour of the 
eigenvalues of H R  as a function of A. Once again the discontinuity at A = 0 is evident. 

Returning to the original Hamiltonian H, we notice that an obvious generalisation 
to consider is the Hamiltonian 

H ' = p 2 / 2 -  1 / r + 2 p r + 2 A 2 r 2  

= p 2 / 2  - l / r  - p 2 / 2 A 2 + 2 ( A r +  p / 2 A ) '  

which reduces to H for p = A. We expect this system to display discontinuity in the 
eigenvalue spectrum only in the limit A + 0 and p + 0 (see discussion at the end). If 
we further impose the condition that p and A go to this limit such that p l A  = constant = 
p, then the energy levels will collapse from the left into the value - p 2 / 2 .  For p > 1 
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I - 0 . 7 c  I 
Figure 2. Plot of the first nine eigenvalues of the Hamiltonian ( 1 1 )  for -0.1 S A  ~ 0 . 1  
calculated using the method of Hill determinants. 

the accumulation point can be made lower than -f, the ground-state energy of the 
s-wave hydrogen atom. Starting with = 1,  if we make p tend to zero, the accumulation 
point of the energy levels can be gradually raised above -i and as it rises above the 
Coulomb energy levels -1/2(n + 1 ) 2 ,  one by one these energy levels are expected to 
detach from the point of accumulation and become continuous with the Coulomb 
levels at  p = A = 0. We can therefore, by appropriate fine tuning, obtain an  accumula- 
tion of energy levels wherever we want between 0 and --CO. These conjectures are 
currently being investigated and the results will be published elsewhere. 

It is worth contrasting here the situation in the present case with that for a classical 
system undergoing catastrophe. Consider a classical double-well potential in which 
the relative depth of the two minima is a function of a control parameter and  the 
system to start with is located in the well with the lower minimum. If now the control 
parameter is varied so that the minimum of this well begins rising with respect to the 
other, the classical system makes a catastrophic transition to the other well at that 
value of the control parameter for which the well it was in is completely wiped out. 
In the corresponding quantum mechanical case, since the wavefunction of the system 
cannot be completely localised in either well alone, the question of a catastrophic 
transfer to the other well normally does not arise and no discontinuity is expected in 
the eigenvalue spectrum as a function of the control parameter. However, in the 
problem studied in this letter the system behaves much like a classical system, and we 
d o  see a discontinuity in the eigenvalue spectrum of the Hamiltonian H given by 
equation (1) because, as A passes through zero from positive to negative, in addition 
to the Coulomb well at the origin a second well springs up  suddenly as soon as A 
becomes negative by a n  infinitesimal amount. A classical particle in this perturbation 
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potential if initially at the origin will continue to remain at the origin as A goes from 
positive to negative since the Coulomb well at the origin persists for all values of A. 
However, if we were to start with negative A and the particle were located in the 
subsidiary well at -1/2A, as A approached 0-, the particle would move away smoothly 
to infinity and then make a catastrophic jump to the origin as A became positive and 
this subsidiary well was wiped out. A sudden change in the shape of the confining 
potential, like for example the sudden appearance of a well defined local minimum, 
appears therefore to be necessary for a quantum mechanical system to display discon- 
tinuity in its eigenvalue spectrum. Thus in the case of the Hamiltonian H‘ given by 
equation (12) it is necessary that both F and A vanish simultaneously in order to see 
a discontinuity in the eigenvalue spectrum. If A is kept fixed at some non-zero value 
and p is made to pass through zero from positive to negative, no discontinuity in the 
eigenvalue spectrum should be observed at p = 0 since now the second minimum at 
r = - F / ~ A ’  would develop smoothly and not suddenly. 

After this work was completed, we came across the paper by Calogero (1979) in 
which he discusses a class of Hamiltonians which have the property that their eigenvalue 
spectra show discontinuity at specific parameter values. Although the Killingbeck 
Hamiltonian (1) belongs to this class, it has the additional feature that, whereas all 
other eigenvalues are discontinuous across A = 0, the ground-state energy remains 
continuous. 

We conclude with the observation that, as more and more quantum mechanical 
systems are studied, the versatility and power of the method of Hill determinants for 
the numerical calculation of eigenvalues to arbitrary degree of accuracy become more 
and more evident. We know, of no other method which could have allowed us to carry 
out the calculations reported in this letter with such a high degree of accuracy in a 
problem which is so sensitive to its parameters. 
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